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Nonplanar modes cannot be considered here. Let us just note that they are known to 

exist. Thus modes corresponding to a circular orbit are found by elementary means. 

Hence u = co9 r, w = f sin r, ~1 = 2n, 4n, etc., and the form of the string is a helical 
line having n curls for xl = 2na. Such modes exist in pairs: as right-hand and left-hand 
spirals, which corresponds to two directions of body rotation around the center. Seeking 
the remaining modes is substantially more complex than determining the periodic mo- 

tions in the Newtonian potential case, for example. This is seen at least from the fact 
that an unrealizable quadrature will replace the equations of the conic sections. 
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PROPAGATION OF A SHOCK WAVE IN A CHANNEL 
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Unsteady flow of a conducting gas under shock wave conditions in channels of various 
magnetohydrodynamic devices was investigated in several recent papers (see for exam- 

ple fl, 23). Most of them assume that the electrical current distribution in the gas behind 
the shock wave is one-dimensional, and that it is controlled by the conditions of current 
closure in the external electrical circuit that connects the electrodes at the channel 

walls. 
However, in real channels there are always regions where the magnetic field is nonho- 

mogeneous and where the channel walls are nonconducting. As a rule, these regions 

coincide with the end zones of the external magnetic field. Behind the shock wave pas- 
sing through the end zones in the gas there are closed electrical currents whose intensity 
depends on the position of the shock front. These two-dimensional currents interact with 
the magnetic field and cause perturbations which catch up with the shock wave and 

change its velocity. 
Terminal effects in steady magnetohydrodynamic flows have been investigated for a 

long time (see for example [3]) but their influence on the unteady gas flow has not yet 

been solved definitely. Among the papers devoted to this subject matter are two exper- 
imental studies [4. S] which indicate that a substantial change occurs in the velocity of 
the plasma front in nonhomogeneous magnetic field, and that this effect is related to the 

emergence of closed-current zones in the plasma. 
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Our purpose here is to analyze theoretically some aspects of this problem. Its mathe- 
matical complexity is enormous (the corresponding magnetohydrodynamic equations are 

two-dimensional and nonstationary) and, with a view to obtaining more readily intelli- 
gible results, we assume that the parameter of magnetohydrodynamic interaction is less 

than unity, and that the induced magnetic fields have no effect on the plasma motion. 
It should be noted that these conditions frequently occur in magnetohydrodynamic sys- 
tems, when the gas conductivity is of the order of 1 mho/cm and when the velocities 

and magnetic fields are not very high. 

1, Let us consider plane or axisymmetric gas motion behind a shock wave propagating 

in a gas at rest in a channel IX“ 1 < co, 0 ( go < h = const, whose walls are non- 
conducting in the presence of an external steady field 6“. The equations of magneto- 

gasdynamics describing the flow under such conditions are as follows : 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

j=s(--Vqfvxb), divj = 0 (1.5) 

2s -I 
1 (y-l)D2 ’ 

p = (7 - i)s + (r - 1) Dun 

T (r + 1) Tfl 

j, = 0 on the shock wave 

v=o, .j,=o for y=O, y 

alw2 
‘= 

TP, - um2= - 
D,2 7 

PO3 

I (on the shock wave) 

(1.6) 

(1.7) 
= 1 (1.8) 

All quantities in Eqs. (1.1) - (1.8) are dimensionless. The dimensional (with a super- 
script “’ “) and dimensionless (without superscript) variables are interrelated as follows : 

x0 = hx, Y” = hy, t+-, D” = D,D 
* 

v” = D*v, Tfl p” = - T - 1 Pa@, p” = $&-&oD,2~ (1.9) 

B” = B,b, j“ = + B,D,j, qP = $ B,D,cp 

Here t is the time, p the density, p the pressure, D the velocity at which the snack 
wave propagates in space, v,, and j, the projections of the vectors of absolute velocity 
of the gas and of the electrical current density onto the normal n to the shock wave 

(n is directed towards the medium at rest), u and v the projections of the absolute 
velocity vector v onto the X- and y-axes, cp the electrostatic potential (associated 
with electrical field defined in the fixed coordinate system), o the electrical conduc- 
tivity of the gas, c the light velocity in vacuum, and Y the ratio of specific heats; 



Propagation of a shock wave in a channel 643 

Y = 0 for plane flow and v = 1 for axisymmetric flow. The dimensional quantities 

D *, Be and cr, represent, respectively, the shock velocity before the region in which 
the interaction with the magnetic field takes place, the characteristic external magnetic 

field, and the conductivity of the gas. The dimensional pressure and density of the gas 

at rest are denoted by pm and pW . 
The quantity N is the magnetohydrodynamic interaction parameter ; the parameter 

s is equal to the reciprocal of the squared Mach number, calculated from the character- 
istic velocity of the shock wave and the velocity of sound ucc in the gas at rest. 

Equations (1.1) - (1.8) were derived assuming that the’medium is a perfect gas with 
constant specific heats, that the induced magnetic fields and Hall effect are fairly small, 
that the channel walls are impermeable to the gas, and that the electrical conductivity 

of the medium before the shock wave is nil. 
Let us consider some characteristics of the motion under investigation. 

First of all, it must be noted that external magnetic field b in real devices is concen- 
trated in some zone L of finite length and is virtually equal to zero outside this zone 

(Fig. 1). Until the shock wave S enters the zone I, (t < 0) the gas flow behind the shock 
front remains homogeneous (since j = 0 and ‘p = O), and the shock wave velocity stays 

b (4 
constant (D = 1). 

,~ 

The gas temperature behind intense 

shock waves rises to such an extent that 
the conductivity becomes significant. 

Fig. 1 

Hence, once the shock wave has entered 

the zone L (t > 0), electrical currents 

(j # 0) begin to flow in the moving gas 
because of its interaction with the 

magnetic field. The distributions of j 
and cp under these conditions can be 
found from Eqs. (1.5) which are ellip- 

tical, so that in principle j and q are “excited” instantaneously in the entire stream 
behind the shock wave. However, in practice these quantities reach significant values 

only to the right of some cross section x = 0 which is generally higher upstream than 
zone L , at a distance of the same order as the size of the channel (Fig. 1). To the left 

of this cross section quantities j and ‘p are small and may be neglected. 
When solving Eqs. (1.5), only the region between the shock wave and the cross section 

5 = 0 needs to be considered, and the following condition can be applied: 

jx = 0 at x = 0, 0 < y < 1 (1.10) 

Although the magnetohydrodynamic forces and Joule heat are zero at II: < 0 (because 

of the above simplification of the flow), the gasdynamic parameters (p, p, V) can gener- 

ally vary in this region because the acoustic perturbations travel upstream. The cross 
section to the left of the cross section z = () is found to be unperturbed (by the mag- 

netic field) and homogeneous if the absolute velocity of the gas is supersonic (Ma > 1) 
behind the shock wave until it enters zone L . The parameters corresponding to this 
case,namely p = po, p = p,, and u = u,, can be found from (1.6) by setting L) = 1 
and U, = uO. 

On the other hand, if the absolute velocity of the gas behind the shock wave is lower 
than the velocity of sound (M, < 1). then the gas parameters to the left of the cross 
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section 2 -= 0 are not equal to PO, p. and uo, and can be found only from the general 
solution of our problem. 

The unperturbed parameters pot p. and u,,, corresponding to the gas motion behind a 
rectilinear shock wave travelling at a velocity Da =const are defined by the following 
formulas: 

p. = 
l 
‘1 -+ 2s’]_l, 41 = 

2 (1 -~ s) 

7 - 1,’ Y+i 
po = CT--1)s 

r(r+f) + 

“(~-1)(1-s) 

lrff1” ’ 
v,, z (I (1.11) 

ao2 = rPlJlE’o7 MO = lro/ao 

In the upstream end zone of the magnetic field it is also possible to find a cross section 
x = x*, to the right of which j is always equal to zero and cp is always constant. Hence, 

at the instants when the shock wave is to the right of the zone 0 < s< x*, we must 
consider Eqs. (1. 5) for this zone with due allowance for (1.10) and for the following 
boundary condition: j _ 0 at x- x’r*,O<y<l (1.12) 

On the other hand, when the shock wave travels through the zone 0 ( J’ < X* ; onr 
consideration of Eqs. (1.5) in the region between x = 0 and the shock wave itself must 
take into account boundary conditions (1.Q (1.8) and (1.10). 

The set of equations (1.1) - (1.4) serves to define the gasdynamic parameters behind 

the shock wave. Relations (1.6) (1.8) and (1.11) are the boundary conditions for the 
solution of set (1.1) - (1.4), and for finding the velocity and shape of the shock wave. 

b (2) 
The fundamental complexity of our 

v 

problem is due to the need for simulta- 

neous solution of “electrical” equations 

(1.5) and “gasdynamic” equations(l.1) - 

-(1.4). It should be also mentioned that 
Eqs. (1.5) are elliptical, while (1.1) - 

-(1.4) are hyperbolic. This often com- 
plicates the application of methods of 

x=i? .2=x* 
numerical analysis still further. 

However, if the parameter of dynamic 

Fig. 2 interaction between the gas and magne- 

tic field is fairly small, then Eqs. (1. 5) 

and (1.1) - (1.4) can be solved successively. In this case, we first find the distribution 
of electrical currents from (1.5). assuming that the gasdynamic parameters are defined 

by (1. ll), and that the shock wave is rectilinear and travels at the velocity D r= 1. In 

the second stage we analyze Eqs. (1.1) - (1.4) assuming that the quantities j x b and 
jz u which appear in these equations are known, having been calculated from the earlier 

solution of (1.5). This method will be used below. 
In carrying out actual computations we must remember that the cross sections J = 0 

and I = Z* must be chosen in accordance with the specific features of the magnetic 
field distribution. For example, if b = (0, 0, b (z)) and b (5) are approximated by a 
step-function (Fig. 1). then the length I* must be greater than L. On the other hand, if 

b (x) asymptotically tends to 0 for 1 x 1 -+ 00, it is always possible to choose L in such 
a way that L = Z* (Fig.2). 

2, When the interaction parameter N between the dynamic gas and the magnetic 
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field is small, the solution of the set of equations (1.1) - (1.8) can be sought in the form 
of the following series; 

7L = Ug + NlLr (x, y, t) + ***, u = NV, (r, y, t) + *.* 

[’ = po + NP, (x:, Y, 0 + *“7 p = po + Np, (5, Y, t) + *se (2.1) 

j = jo(z, y, t) + Nj, (5, y, t) -t- eeel cp = 'PO (5, Y7 6 + 

+ NT, (5, y, t) + *** 

aI (z, y, t) = 5 - t + Iv* (y, t) + *** = 0 

Here the constants uo, p. and p. are defined by formulas (1.11). Equation Q, = 0 
defines the shape of the shock wave. 

Substituting (2.1) into (1.1) - (1.8) we obtain the following equations defining the 
electromagnetic parameters j, and rp,and the gasdynamic parameters r.~r, Q, p1 and&: 

j. = o. (-- v(po + v. x bj, div j. = 0 (2.2) 

jr0 = 0 at 5 = 0 

jno = 0 at the shock wave (or jxo = 0 at x = a~*) 

Jvo = 0 at y==O, y=l 

~+po~+II,~~.,,~;+~=O 

PO 2 + POUO e + 2 = f, (f, =,(jo x b)J (2.3) 

pus _(-pouo~+~=:fri (f, = (jo x b),,) 

$t uog +rpo 
i 

~+2%+~~+1I)q ~qJ!!$ 

p1 = aul, p1 = [3ul, z == - 6ul, u1 = uoll)(y, t) (2.4) 

2tr--1) 
a = (T + 1) (1 fs) ’ p = 

2s (r2 - 1) 

(T - 1 + w (1 + 4 ’ 
6= r+f 

2 (1 + 4 
VI = 0 at y=O, y=l (2.5) 

Let us average Eqs. (2.3) - (2.5) with respect to y. Allowing for (2.5). we obtain the 
following set of equations for the gasdynamic parameters averaged over the cross section: 

_cgL+,,2gL+.,2$!$=0 
a (pl> 

PO * + pouo q- + as = (f,> 

a (pl> 
-jji-- + uo 

Qc_ + ypo !$x = (r- 1) (q) P-6) 

(plj = a Cud, (PI> = P Cur>, - 2 = 6 (6 ( > 
at 5 = t (2.7) 

All of the averaged parameters above are functions of 2 and t I the quantity 
- (6’$ / at) characterizes the perturbation of the average velocity of the shock wave 
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(D) = 1 - N <all, / at) f . . . (2.8) 
The method of characteristics which has been so successfully used for the solution of 

many unsteady one-dimensional problems in gasdynamics and magnetogasdynamics also 

constitutes the simplest way of analyzing Eqs. (2.6) in this case. 

Equations (2.6) have the three following real families of characteristics : 

dx 
- = ug I_ a, 
dt 

t- d (Pl) + poaod (Ul) - dt Ia0 tr,> -II (7, - I) (c/)1 = 0 
dx 

- = ug, 
dt d 91) = - PO 

(2.9) 

(2.lU) 

Let us point out that our gasdynamic problem in this case can be solved in successive 
stages by means of characteristic relations (2.9), (2.10). First, the quantities (or), (~1) 

and the perturbed shock wave velocity must be found from (2.9) under suitable boundary 

conditions ; then the gas density (pr) must be determined from (2.10). 
We assume that the magnetic field decays asymptotically, so that the system shown 

in Fig. 2 is valid. The corresponding families of characteristics (2.9), (2.10) for M,, > 1 
are shown in Fig. 3. Straight lines 1 and 2 are the characteristics of the first and second 

families ; straight lines 3 are the trajectories of the gas particles. 

First, we find the gas parameters immediately behind the shock wave (for instance, at 
point A ,Fig. 3). Allowing for the relations (2.9) which connect the parameters along 
characteristic A ‘A , for the boundary conditions (2.7) and for the following equations: 

(ul) = 0, (pl> = 0, (pl> = 0 at x = 0 
we obtain 

(Q> = (uo -t a,) (m -I- POUO) s Gdx (G = a, (f,> -!- (r - I) (4)) 
A'A 

(&A> = u @,A), (P,,> = P @&&, - (z, = 6 <uIA) (2.11) 

The gas parameters at an arbitrary point of flow C can now be found by means of 

(2.9). (2.10) and (2.11). 
After some elementary transformations we obtain 

(a - pouo) 
MC) = 2 (uo + an1 (a + POUO) A,A s 

~dx + ’ 
2 (uo+ ao) 

( G dx - 2cuo1_aiJ l G* dx 

Kk AC 

(‘l(,) = & ‘;+ \ G dx - (plcjj 
Kk 

(plc> = (pm) - $- \ T- dx 
R’c 

(G* = oo <f,> - (r - 1) (9)) 

(2.12) 

Quantity (ptn) equals to zero if the trajectory of particles passing through point c 
intersects axis t ; it is equal to the perturbation of gas density at point R’ in the shock 
wave if the trajectory of particles passing through the considered point C’intersects the 

shock wave (Fig. 3). 
The gasdynamic parameters for MO < 1 can be found in the same way. In this case 

the region of perturbed gas motion in the plane z, t lies between the straight lines t = I 
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and t = z/( u0 -Q). On the second of these two lines,the perturbation of gasdynamic para- 
meters is equal to zero. The parameters of the gas directly behind the shock wave are 

defined by (2.11). as in the earlier 

case M, > 1 , since the perturbing 
factors are equal to zero when x< 0, 

and integration along the character- 

istic must be carried out over the 
interval 0 < x < x*. 

Thus, the averaged gasdynamic 

parameters behind the shock wave 
can be determined relatively easily 
when we know the perturbing factors, 

i.e. the magnetohydrodynamic force 

(fx) and the Joule heat (q). These 
factors have to be found by solving 

Eqs. (2.2). 

Fig. 3 

5. First of all, we shall find the 

propagation velocity of the shock 
wave a large distance downstream 
from the zone of the magnetic field. 

Let us consider the position of the 

shock wave defined by the following conditions: 

x = c>x**, x** = x* 110 + =o 
uo + a0 - 1 (3.V 

It is clear (Fig. 3) that quantities (fX) and (4) on the corresponding characteristic 

E’E do not depend on t and are functions of x alone. This is due to the electric field 
in the channel becoming stationary when the shock wave leaves the region 0 < x < x*, 

Integration along characteristic E’E yields 

5 Gdx=a,S’(f,)dx+(y-l)~‘~q~dx (3.2) 
E'E 0 0 

It should be pointed out that quantities (f,) and ((1) in (3.2) represent the perturb- 
ing factors corresponding to a steady gas flow (with velocity u. and conductivity oo) 

through the channel in the specified nonhomogeneous magnetic field. When a conduct- 
ing medium flows through a channel with electrically nonconducting walls, the follow- 

ing integral equation holds p]: X* 

- u. \ (f*) ax = T’(4) ax = 9x 
6 Ii 

(3.3) 

Here qx is the total dimensionless Joule dissipation in the channel. 
Using (2. ll), (3.2). (3.3) and (2.8) we obtain the following asymptotic expression for 

the propagation velocity of the shock wave: 

<Do) - D*=- F T (s, r) Qz, T ($9 7) = 
(7 - 1) 6uo [ uo - (r - 1) uo] 

M (r + 1) (~0 + a01 (a + PO@ 

4c = ao%2Qc (3.4) 



648 A. B. Vatazhin 

Here (Do) is the averaged dimensional velocity of the shock wave, 6,” the dimen- 
sional conductivity calculated from parameters (1.11). and Qc the dimensionless Joule 

dissipation corresponding to a gas flow for which both velocity and conductivity are equal 

unity. The quantities 6, ZQ,, a,, p,,and a are obtainable from (1.11) and (2.4), 

The Joule dissipation Qz is one of the most important characteristics of the magneto- 
hydrodynamic systems ; it has been calculated by several authors. Formula (3.4) indi- 

cates that Qc enables us to find the resulting change in the velocity of the shock wave. 

Let us now investigate some properties of function T (s, y). First of all, we notice that 
parameter s varies between 0 (there is no counter-pressure, M, = (D, / a$ + m) 

and unity (a weak discontinuity spreads through the gas, M, = 1, M, = 0). 

We shall prove that the function T (s, y) > 0 for 1 < y < 2. For this purpose, we 

first show that r (s, y) = 1 - (y - l)MO > 0. This inequality is easy to prove by noting 

that ar / 8s = --(y - 1)6’M,, / 8s > 0 for 1 < y < 2, so that only fulfilment of condi- 
tion r (0, y) > 0 needs to be verified. Using (1.11) it is easy to show that r (0, y) is 

always larger than 0, provided the value of y remains within the specified range of vari- 

ation. 
Thus, when inequality 1 < y < 2 is valid, interaction between the shock wave and 

magnetic field must result in a reduction of the propagation velocity of the wave. 

aos 

au4 

aaz 

Fig. 4 Fig. 5 

To illustrate the effect of the parameters y and s on the asymptotic velocity of the 
shock wave, we have in Figs.4 and 5 the values of T (0, y) and T (s, y) for various 
values of y. We note that T (1, y) = 0, T (s, 1) = 0, T (0, 2) = 0, and, when the value 

of y is constant, there is a value of s = s max (y) such that the shock wave experiences 

the maximum retardation. 

Shock waves of infinitely high intensity (S = 0) are of the greatest practical interest. 

All available information leads to the conclusion that the propagation of such shock 
waves resembles most closely the motion of plasmoids in electrical discharge devices. 
The function T (0, y) shown in Fig.4 enables us to elucidate the effect of magnitude of 
y on the velocity of shock waves in this case. 

Let us now consider several examples of shock wave propagation in nonhomogeneous 
magnetic fields and determine the velocity of the shock front for arbitrary values of its 
coordinate 6. 

4. We consider a shock wave travelling in a circular tube (Y = 1) across an extem- 
ally applied axisymmetric magnetic field (the cylindrical coordinate system y, 0, I is 
used) 
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b = (b, (z, Y), 0, b, (~7 Y)) (44 
In this case V(p s 0, and the distribution of electromagnetic parameters in accord- 

ance with (2.2) is represented by the following formulas: 

j = (0, - Qod+l7 (3, f, = - Q&&y27 <fz> = - aouog (4 

q = oOuo2by2, (9) = aouo2g (z) [g w = \Yb,Pdy) 
0 

Relations (4.1) are valid for the region between the cross section 1~ = 0 and the shock 

wave. 
A particularly interesting characteristic of the distribution of electromagnetic para- 

meters is that the current density at all points of space through which the shock wave 
has already passed is independent of time. 

From (2.11) and (3.2) we obtain the following expression for the velocity of the shock 

wave : 

(Do)--De=-- “$y T(wvx), (4.3) 
Co 

Quantities D”, a,‘, and ?’ in (4.3) can be found in the same way as in formulas 

(3.4) ; 5 = 5 is the present coordinate of the shock wave. 
It follows from (4.3) and inequalities g 2 0 and T > 0 that the propagation of a 

shock wave in a circular tube in the presence of an axisymmetric magnetic field is 

accompanied by continuous retardation of the shock front. 
For the convenience of numerical computation, the coordinate of some characteristic 

point in the region of the magnetic field will be designated r,; we also introduce the 

new variable Z- z,,= x. Allowing for the asymptotic nature of the magnetic field decay, 

we assume that x0’s 1. We then have 

Z;” L--r. 
K= \ gdXs ( gdX 

. 
-X0 --co 

(4.4) 

As an example, let us consider the propagation of a shock wave in a magnetic field 

which is nearly axisymmetric within the channel. This is the case if it may be assumed 
that the tube radius I: is considerably smaller than the characteristic radius II or :IC 

solenoic!al winding (e = h / H (( 1). 
In this case, the following expression may serve as an approximation of bzl [6]: 

b, = -T + 0 (73) 

where ‘t (E) is the distribution of the axial field component b, for y = 0. 
using (4.5), we can write the integral in (4.4) as follows: 

c--x0 

\ 

!: 
K= gdX=+ \ I- (4) dS + 0 (e3) 

. 
--CT) --m 

(4.6) 

l,et us carry out the computations for a magnetic field generated by a single current- 

carrying turn of radius H, placed at the cross section E = 0, and also for a field whose 
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origin is a semi-infinite solenoidal winding of the same radius. For these two fields, 
function r (E) is expressed by the formulas 

z (E) = (1 + p)-a’2 (single turn), z (5) = 1/Z (1 + E, (1 + g2)-“p) (solenoid) 

The field at the point 5 = 0, tl = 0. is taken as the characteristic field B, generated 
by a single turn, and the magnetic induction for E = 00 is chosen to represent the char- 

acteristic field of the solenoidal winding. 

Quantity K in these two cases is 

15p’ + 55115 + 73p3 - 15/L 

(1 + PY4 I 
+ 0 (&a) 

++ arctg p + 0 (e3) (solenoid) 

Figure 6 shows the ratios 16K / a illustrating the retardation of shock wave s in the 
magnetic fields of a single turn and of a solenoidal winding (the terms 0 (~3) are neg- 
lected). 

We note that K,,, = K (m) = 9 x 15 en / (16 x 8 x 48) in the case of the magnetic 
field induced by a single turn, and that K,,, = K (CU) = 3ne / (16 x 32) when the shock 

wave travels through the field generated by a solenoidal winding . 

The graphs in Fig.6 show that the 

-3 -2 -I ff I shock wave is retarded equally in the 

regions E < 0 and E > o . 

6, Now let us turn to the propaga- 
tion of a shock wave in a flat channel 

Fig. 6 
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(v = 0) in the presence of a magnetic field b= (0, 0, b(r)). We assume that the compu- 
tation as in Fig.2 may be used. In contrast to the case of flow in an axisymmetric mag- 
netic field, in the present case the distribution of electromagnetic parameters of the flow 

is much more complex in the regions 0 < x < t (for t < s*) and 0 < x < z* (fort >s*). 

In this case we must solve the following boundary value problem in order to determine 
the current j : 

Ao=U, ao/ay = - b (5) at y=O, y=i 

ao s=t (whent<x*) 
-- 
ax -O at s=O, 

z = z* (when t > P) 

jo = ~CUOJ, ‘po = UOO, J, = - g - b (x);) 

Attention should be drawn to the fact that the time t characterizes the position of 

the shock wave ( l ) and it is a parameter in equations (5.1). If t < z+, problem (5.1) 
has to be solved for the region 0 < z < t, 0 < y < 1, and quantity J turns out to be 
dependent on t: J = J (5, t). However, if t > x *, then Eq. (5.1) must be considered in 
theregionO<s<s*.O<y<l, soJ=J(z). 

The quantities (jr) and (a) and the integral in (2.11) can be calculated by means 

of relations (2.3) as follows : 
1 

<f,> = aouoF, F = F (x,t) = 1 J,bdy 

0 

(5.2) 

<q> = couo2Q, Q=QW=\(J~+JJ~Y, 5 Gdx = SOUOR (c)y 5=x(A) 
0 A'A 

r. 
R = R (5) = [ [noF (x,2) + (7 - 1) uo Q(v)] dx, Z=&5-2 

0" 
uo+ao 

The perturbations of the gasdynamic parameters in the shock wave are found from 
(2. ll), with allowance for (5.2) and relations (1.11) and (2.4) which serve to define 

u01 a,, a, p and 6. The velocity of the shock wave can be expressed as follows: 

bo”Be2h 
(Do> - D, = - 

T 6, T) 

C2P, [a0 - (r - 1) uo] R (5) (O<C<c@ 

D” = D, (r;<Ol (5.3) 

When the function R is calculated from (5.2), it is necessary to distinguish between 
the following intervals in which 5 varies: (0, x*), (x*, x**) and 5 > x**, where x** 
is defined by formula (3.1). In the first of these intervals, the functions F and Q on a 
specified characteristic A’A depend on two arguments, namely x and t. When 5 lies 
in the second interval (e. g. the point K in Fig. 3), the characteristic K’K includes a 

point L in which it intersects the straight line t = z*, and this point divides K’K into 
the section K’L where F =F (x, t) and Q = Q (I, t) , and the section LK where 
F = F (x) and Q = Q (5) for x (L) <x < I* , and F = 0, Q = 0 for x* < x < x (K). 

*) It must be remembered that equation z(t) = t represents the law of motion of the 
shock wave for N = 0. 
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However, we already showed in Sect. 3 that for x > x** the functions F and Q’on the 
integration path along the characteristic depend solely on I from z = 0 to .Z = X* , 
and are equal to zero for 2 > I*. In this case 

R (5) = - [ao - (‘I - 1) uo] Qc, Qx = "s QWdZ 
0 

and (5.3) becomes (3.4). 
For example, we investigated the propagation of the shock wave in a magnetic field, 

Fig. 7 

defined as follows: (5.4) 

I 
rtxp [ - (5 - 3)2] (O<.r <3) 

b(z)== 1 

[exp [- (5 - 4)21 

(3<X :4j 

(4<*‘< 7) 

This magnetic field is illustrated in 

Fig. 7. 
Preliminary computations of steady 

electric fields for a specified geometry 
of the magnetic field indicated that 
electrical currents were virtually zero 
at the cross sections 5 = 0 artd z = 7. 

For the purposes of fiuding the solution 

of problem (5.1) we therefore assumed that I* = 7. 
Equations (5.1) were solved by numerical analysis for an arbitrary position of the 

front boundary of that region in which the electrical currents flow. From the values of 
F (5, t) and Q (5, t) , determined in this manner, we found the perturbed gas parameters 
behind the shock wave, and also calculated the velocity of the shock front. 

The dynamic conditions of shock wave propagation in a channel in the presence of a 

magnetic field are illustrated in Fig. 7, which shows the function Y (c), calculated for 
y = 1.42 and s = 0 from the following expression (see formula (5.3)) : 

<Da) - D, = 0.204 -v(i) for 0 < 5 < 00 
cc 

D”=D, for 5 < 0 (5.5) 

Figure 7 indicates that the velocity of the shock wave changes extremely nonmono- 
tonically along the channel. When the shock front moves through the upstream end 

zone of magnetic field (5<3.5), a reduction in its velocity occurs (V < 0, dV / dc < 0). 
This effect is connected with the formation of terminal current in the region 0 < z < 
< 3.5 ; this current is oriented in such a way that the force exerted on gas layers near 

shock wave S retards them (Fig. 8a). 
Further, when the shock wave enters the upstream end zone of magnetic field (5 > 3.5), 

its velocity begins to increase (dV / d< > 0). This type of dependence may be explained 
by the emergence of a second turn of terminal current which interacts with the magnetic 
field in such a manner that the force exerted on the gas layers near the shock wave S 

accelerates them (Fig. 8b). The corresponding perturbations catch up with the shock 
wave and accelerate it, For some value of 5 the quantity V reaches its maximum value 
V max > 0 and then begins to drop asymptotically down to v = V, = - T (0, 1.42)Q, / 

/ 0.204. This reduction in the shock wave velocity can be explained by the perturbing 
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factors (fz) and (q) being virtually equal to zero directly behind the front of shock 
wave occupying positions corresponding to 5 > 5, while the total effect of perturbations 
generated within region 0 < z < I* is to retard the shock wave (as has been shown in 

Fig. 8 

8. We have already noted that expressions 

(2.11) and (2.12) enable us to calculate the 

perturbation of gasdynamic parameters, once 

the forces and heat sources, (fX) and (q) , 
have been found. The distribution of these 

quantities becomes known when we solve the 

equations for electrical parameters (jO, Q), 

expressed in their simplest form in (2.2). Sets 

of equations such as (2.2) have been widely 

investigated for a long time (see [3]). There __ . 
is, therefore, a good chance of making use of already established results and computa- 
tional methods in studying shock wave motion in channels with anisotropic conductivity, 
induced magnetic fields, generating and accelerating flow modes, etc. 

From the available information concerning the effects of various parameters on inte- 
gral characteristics and magnetohydrodynamic devices, a number of conclusions can be 

drawn about the amount of retardation experienced by a shock wave in a magnetic field. 
First, it must be pointed out that the Joule dissipation Qn in a gas flow in a channel with 

nonconducting walls decreases as the Hall parameter 6 increases and the Reynolds mag- 

netic number R,decreases. Hence, in accordance with (3.4), as 6 and R, increase, the 
dimensionless characteristic of retardation of the shock wave E (oo), where e (5) = ((DO.) - 
- D,) I D.N , also decreases. The corresponding curves e = e (5) must steadily 
shift to the right as R, increases; this is a direct consequence of the magnetic force 

*) In further experiments (reported to me orally) the author of [4, 51 noticed that the 

velocity of the plasma front behind the zone of a nonhomogeneous magnetic field of 
moderate intensity (for N < i) rises in excess beyond its original value D, , and then 
drops again below D,. It is evident that the same effect is revealed in our theoretical 
analysis of the unsteady gas motion. The numerical discrepancy between our analytical 
results and the experiments can be explained, above all, by the induced magnetic fields 

(present in the experiments) and the use (in our analysis) of relations at the shock wave as 
boundary conditions on the plasma front. 

Satisfactory qualitative agreement between the analytical and experimental results 
suggests that many properties of magnetic gasdynamic flows in pusle discharge devices 
and shock tubes might be explained by conventional ideas of gasdynamics. 

Sect. 3). 
The acceleration of the front of travelling 

plasma in the exit zone of the magnetic field 

( l ) was noted in experiments [4, 51. 
Computations for v = 1.67 and s = 0 showed 

that the nature of the shock wave motion 
remains the same. 
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lines being swept along by the gas stream. 

On considering the motion of shock wave in a channel of a magnetohydrodynamic 
generator, we must remember that the kinetic energy of the gas is converted not only 
into electrical energy P applied to the external load, but also into the Joule heat Q. 
Using the general energy equation A = Q + P which relates the work A done by the 

medium in overcoming the counterforce of magnetic field, to the quantities Q and P, 
we can prove that the asymptotic expression for the velocity of shock wave is of the 

form 

(D”> -D, = - 
SO”B,% 
T,&&':b{Qx Ia)-- CT - l)unl td’c} (6.1) 

The quantities occurring in (6.1) are defined in (3.4). 

The author thanks E, K. Kholshchevnikova for carrying out the numerical computation 

of Eqs. (5.1). and to A. N. Kraiko for his useful comments. 
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